Objective: Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. Method: We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. Conclusion: The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. Significance: This study shows the potential of using semi-supervised GAN-based classification to improve bladder tissue classification when annotations are limited in multi-domain data.
translated by 谷歌翻译
腔内器官内部的导航是一项艰巨的任务,需要在操作员的手的运动与从内窥镜视频获得的信息之间进行非直觉的协调。开发自动化某些任务的工具可以减轻干预期间医生的身体和精神负担,从而使他们专注于诊断和决策任务。在本文中,我们提出了一种用于腔内导航的协同解决方案,该解决方案由3D打印的内窥镜软机器人组成,该机器人可以在腔内结构内安全移动。基于卷积神经网络(CNN)的Visual Servoing用于完成自主导航任务。 CNN经过幻象和体内数据训练以分割管腔,并提出了一种无模型的方法来控制受约束环境中的运动。在不同的路径配置中,在解剖幻像中验证了所提出的机器人。我们使用不同的指标分析机器人的运动,例如任务完成时间,平滑度,稳态中的误差以及均值和最大误差。我们表明,我们的方法适合在空心环境和条件下安全导航,这些环境和条件与最初对网络训练的条件不同。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Despite the impact of psychiatric disorders on clinical health, early-stage diagnosis remains a challenge. Machine learning studies have shown that classifiers tend to be overly narrow in the diagnosis prediction task. The overlap between conditions leads to high heterogeneity among participants that is not adequately captured by classification models. To address this issue, normative approaches have surged as an alternative method. By using a generative model to learn the distribution of healthy brain data patterns, we can identify the presence of pathologies as deviations or outliers from the distribution learned by the model. In particular, deep generative models showed great results as normative models to identify neurological lesions in the brain. However, unlike most neurological lesions, psychiatric disorders present subtle changes widespread in several brain regions, making these alterations challenging to identify. In this work, we evaluate the performance of transformer-based normative models to detect subtle brain changes expressed in adolescents and young adults. We trained our model on 3D MRI scans of neurotypical individuals (N=1,765). Then, we obtained the likelihood of neurotypical controls and psychiatric patients with early-stage schizophrenia from an independent dataset (N=93) from the Human Connectome Project. Using the predicted likelihood of the scans as a proxy for a normative score, we obtained an AUROC of 0.82 when assessing the difference between controls and individuals with early-stage schizophrenia. Our approach surpassed recent normative methods based on brain age and Gaussian Process, showing the promising use of deep generative models to help in individualised analyses.
translated by 谷歌翻译
A new Lossy Causal Temporal Convolutional Neural Network Autoencoder for anomaly detection is proposed in this work. Our framework uses a rate-distortion loss and an entropy bottleneck to learn a compressed latent representation for the task. The main idea of using a rate-distortion loss is to introduce representation flexibility that ignores or becomes robust to unlikely events with distinctive patterns, such as anomalies. These anomalies manifest as unique distortion features that can be accurately detected in testing conditions. This new architecture allows us to train a fully unsupervised model that has high accuracy in detecting anomalies from a distortion score despite being trained with some portion of unlabelled anomalous data. This setting is in stark contrast to many of the state-of-the-art unsupervised methodologies that require the model to be only trained on "normal data". We argue that this partially violates the concept of unsupervised training for anomaly detection as the model uses an informed decision that selects what is normal from abnormal for training. Additionally, there is evidence to suggest it also effects the models ability at generalisation. We demonstrate that models that succeed in the paradigm where they are only trained on normal data fail to be robust when anomalous data is injected into the training. In contrast, our compression-based approach converges to a robust representation that tolerates some anomalous distortion. The robust representation achieved by a model using a rate-distortion loss can be used in a more realistic unsupervised anomaly detection scheme.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
深度神经网络在医学图像分析中带来了显着突破。但是,由于其渴望数据的性质,医学成像项目中适度的数据集大小可能会阻碍其全部潜力。生成合成数据提供了一种有希望的替代方案,可以补充培训数据集并进行更大范围的医学图像研究。最近,扩散模型通过产生逼真的合成图像引起了计算机视觉社区的注意。在这项研究中,我们使用潜在扩散模型探索从高分辨率3D脑图像中生成合成图像。我们使用来自英国生物银行数据集的T1W MRI图像(n = 31,740)来训练我们的模型,以了解脑图像的概率分布,该脑图像以协变量为基础,例如年龄,性别和大脑结构量。我们发现我们的模型创建了现实的数据,并且可以使用条件变量有效地控制数据生成。除此之外,我们创建了一个带有100,000次脑图像的合成数据集,并使科学界公开使用。
translated by 谷歌翻译
我们研究了图结构识别的问题,即在时间序列之间恢复依赖图的图。我们将这些时间序列数据建模为线性随机网络动力学系统状态的组成部分。我们假设部分可观察性,其中仅观察到一个包含网络的节点子集的状态演变。我们设计了一个从观察到的时间序列计算的新功能向量,并证明这些特征是线性可分离的,即存在一个超平面,该超平面将与连接的节点成对相关的特征群体与与断开对相关的节点相关联。这使得可以训练各种分类器进行因果推理的功能。特别是,我们使用这些功能来训练卷积神经网络(CNN)。由此产生的因果推理机制优于最先进的W.R.T.样品复杂性。受过训练的CNN概括了结构上不同的网络(密集或稀疏)和噪声级别的轮廓。值得注意的是,他们在通过合成网络(随机图的实现)训练时也很好地概括了现实世界网络。最后,提出的方法始终以成对的方式重建图,也就是说,通过确定每对相应的时间序列中的每对节点中是否存在边缘或箭头或不存在箭头。这符合大规模系统的框架,在该系统中,网络中所有节点的观察或处理都令人难以置信。
translated by 谷歌翻译
深层生成模型已成为检测数据中任意异常的有前途的工具,并分配了手动标记的必要性。最近,自回旋变压器在医学成像中取得了最先进的性能。但是,这些模型仍然具有一些内在的弱点,例如需要将图像建模为1D序列,在采样过程中误差的积累以及与变压器相关的显着推理时间。去核扩散概率模型是一类非自动回旋生成模型,最近显示出可以在计算机视觉中产生出色的样品(超过生成的对抗网络),并实现与变压器具有竞争力同时具有快速推理时间的对数可能性。扩散模型可以应用于自动编码器学到的潜在表示,使其易于扩展,并适用于高维数据(例如医学图像)的出色候选者。在这里,我们提出了一种基于扩散模型的方法,以检测和分段脑成像中的异常。通过在健康数据上训练模型,然后探索其在马尔可夫链上的扩散和反向步骤,我们可以识别潜在空间中的异常区域,因此可以确定像素空间中的异常情况。我们的扩散模型与一系列具有2D CT和MRI数据的实验相比,具有竞争性能,涉及合成和实际病理病变,推理时间大大减少,从而使它们的用法在临床上可行。
translated by 谷歌翻译
自动生物医学图像分析的领域至关重要地取决于算法验证的可靠和有意义的性能指标。但是,当前的度量使用通常是不明智的,并且不能反映基本的域名。在这里,我们提出了一个全面的框架,该框架指导研究人员以问题意识的方式选择绩效指标。具体而言,我们专注于生物医学图像分析问题,这些问题可以解释为图像,对象或像素级别的分类任务。该框架首先编译域兴趣 - 目标结构 - ,数据集和算法与输出问题相关的属性的属性与问题指纹相关,同时还将其映射到适当的问题类别,即图像级分类,语义分段,实例,实例细分或对象检测。然后,它指导用户选择和应用一组适当的验证指标的过程,同时使他们意识到与个人选择相关的潜在陷阱。在本文中,我们描述了指标重新加载推荐框架的当前状态,目的是从图像分析社区获得建设性的反馈。当前版本是在由60多个图像分析专家的国际联盟中开发的,将在社区驱动的优化之后公开作为用户友好的工具包提供。
translated by 谷歌翻译